

1.2 МЕХАНИЗМЫ ЛИНЕЙНОГО ПЕРЕМЕЩЕНИЯ, ТИПОРАЗМЕРЫ

Механизмы линейного перемещения (сервомеханизм, прямоходный механизм, электромеханический привод линейного движения, actuator, МЭП) с малым усилием подразделяются на категории:

- Механические приводы с трапецеидальной передачей;
- Механические приводы с шариковинтовой передачей (ШВП).

МАЛЫЕ МЕХАНИЗМЫ

Трапецеидальная передача Рабочий цикл

15% по 10 мин 30% по 10 мин

тип усилие скорость

LMR 01 $F_{max} = 1300 \text{ H}$ $V_{max} = 52 \text{ mm/cek}$ LMR 02 $F_{max} = 3000 \text{ H}$ $V_{max} = 40 \text{ mm/cek}$ LMR 03 $F_{max} = 6000 \text{ H}$ $V_{max} = 25 \text{ mm/cek}$

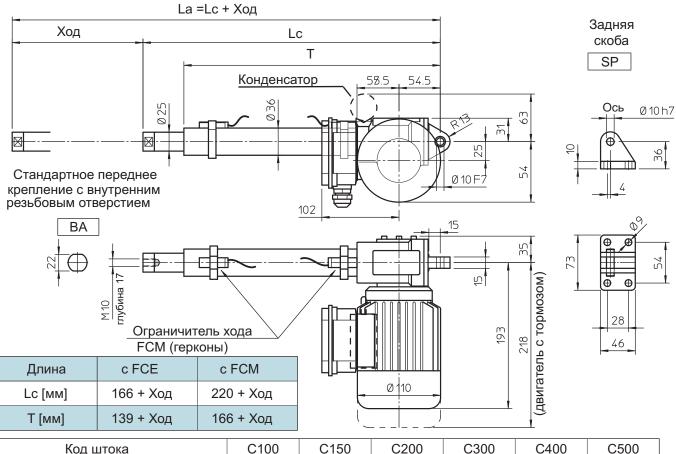
LMI 02 $F_{max} = 750 \text{ H}$ $V_{max} = 19 \text{ мм/сек}$ LMP 03 $F_{max} = 280 \text{ H}$ $V_{max} = 190 \text{ мм/сек}$ UAL 0 $F_{max} = 390 \text{ H}$ $V_{max} = 600 \text{ мм/сек}$

Шариковинтовая передача Рабочий цикл 50% по 10 мин 100% по 10 мин

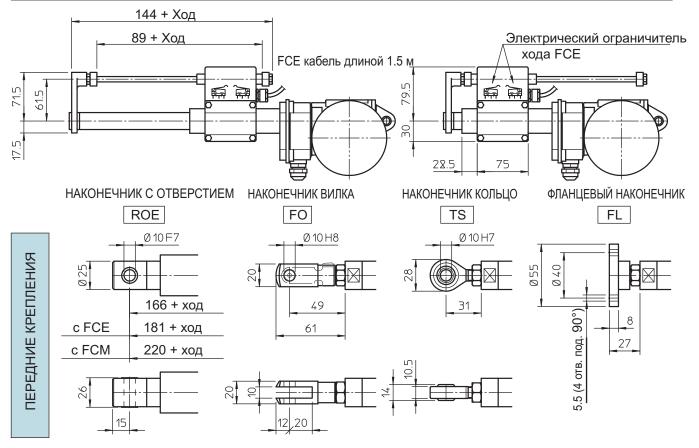
тип усилие скорость

CLB 25 $F_{max} = 5000 \text{ H}$ $V_{max} = 125 \text{ mm/ce} \text{K}$ CLB 27 $F_{max} = 7000 \text{ H}$ $V_{max} = 58 \text{ mm/ce} \text{K}$

UBA 0 $F_{max} = 420 \text{ H}$ $V_{max} = 500 \text{ MM/cek}$


МОТОР РЕДУКТОР(ОБОРОТНЫЙ) вращающийся выходной вал

MR 15 Mt = 3 H*M n = 520 об./мин MR 31 Mt = 15 H*M n = 185 об./мин MR 40FC Mt = 15 H*M n = 185 об./мин



ЛИНЕЙНЫЕ МЕХАНИЗМЫ ATL 10 с AC двигателями

ГАБАРИТНЫЕ РАЗМЕРЫ

Код штока	C100	C150	C200	C300	C400	C500
Рабочая длина хода с FCE [мм]	100	150	200	300	400	500
Рабочая длина хода с FCM [мм]	73	123	173	273	373	473

ЛИНЕЙНЫЕ МЕХАНИЗМЫ ATL 10 с AC двигателями

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Нагрузка при сжатии до 5 000 Н
- Нагрузка при растяжении до 4 000 Н
- ■Линейная скорость до 140 мм/с
- ■Стандартная длина штока: 100, 150, 200, 300, 400, 500 мм (для других / более длинных ходов штока свяжитесь с нами)
- •Корпус и заднее крепление из алюминиевого сплава, с бронзовой втулкой
- •Внешняя труба из анодированного алюминия
- ■Шток из хромированной стали допуск f7
- •Стандартное переднее крепление ВА или наконечник с отверстием ROE из нержавеющей стали AISI 303 с бронзовой втулкой
- •Электродвигатель переменного тока АС 3-фазный или 1-фазный (характеристики двигателя см. стр. 70)
- Рабочий режим с тах нагрузкой: 30% за 10 мин. при (-10...+40) °С
- •Стандартная защита IP55 (IP54 с тормозом)
- •Стандартное положение двигателя, как показано на эскизе (правостороннее, код RH)
- дополнительного обслуживания

ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

- Различные передние крепления
- Шток из нержавеющей стали (код SS)
- Задняя скоба (код SP)
- Защита от механической перегрузки, предохранительная муфта (код FS)
- Электродвигатель с тормозом
- Два регулируемых концевых магнитных выключателя (код FCM)
- Дополнительные выключатели для промежуточных положений
- Электромеханический ограничитель штока для линейной скорости до 30 мм/с (код FCE)

(Технические данные см. стр. 72)

ОПЦИИ:

- •Двигатель с противоположенной стороны (левостороннее, код LH)
- ■Механизм заправлен высокоресурсной смазкой и не требует ■Тыловое крепление повернуто на 90°(код RPT 90)

ХАРАКТЕРИСТИКИ с АС 3-фазным 50 Гц 230/400 В или 1-фазный 50 Гц 230 В

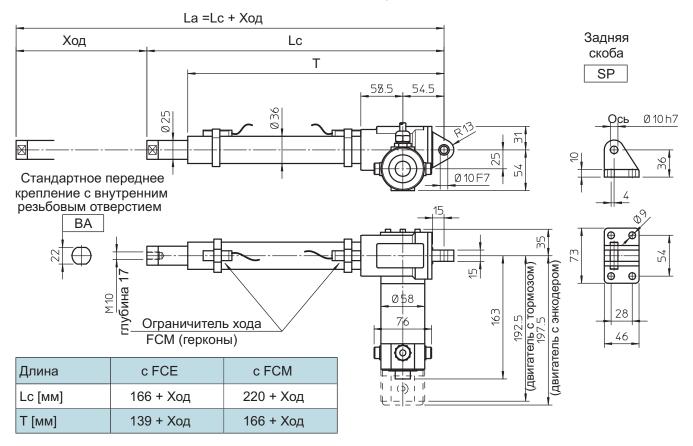
· · · · · · · · · · · · · · · · · · ·							
1-заходный трапецеидальный винт Tr 14 4							
Отношение	Двигатель 0.09	кВт - 4 полюса	Двигатель 0.12 кВт - 2 полюса				
Отношение	Усилие [Н]	Скорость [мм/с]	Усилие [Н]	Скорость [мм/с]			
RH1	1750	23	1250	47			
RV1	2620	15	1860	30			
RN1	4490	7.5	3230	15			
RL1	5000	3.5	5000	7.5			
RXL1	5000	2	5000	3.5			

2-заходный трапецеидальный винт Tr 14 8 (P4)							
0=110111011140	Двигатель 0.09	кВт - 4 полюса	Двигатель 0.12 кВт - 2 полюса				
Отношение	LOAD [N]	SPEED [mm/s]	LOAD [N]	SPEED [mm/s]			
RH2	1070	47	790	93			
RV2	1620	30	1180	60			
RN2	2880	15	2080	30			
RL2	4800	7.5	3520	15			

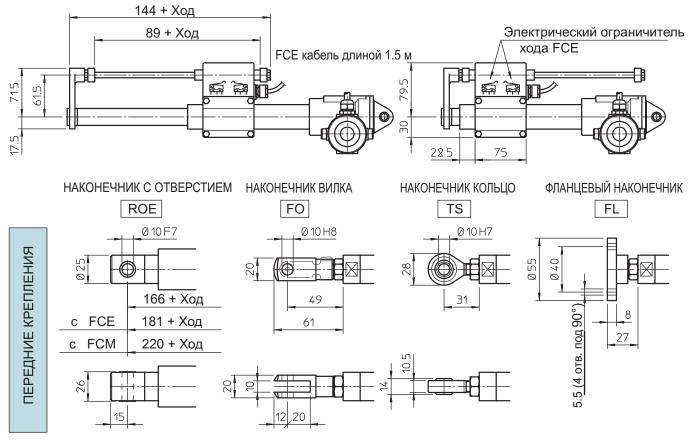
3-заходный трапецеидальный винт Tr 14 12 (P4)							
Отношение	Двигатель 0.09	кВт - 4 полюса	Двигатель 0.12 кВт - 2 полюса				
Отношение	LOAD [N]	SPEED [mm/s]	LOAD [N]	SPEED [mm/s]			
RH3	800	70	560	140			
RV3	1210	45	860	90			
RN3	2190	22	1540	45			
RL3	3680	11	2680	22			

Условия самоблокировки

Информация о статической самоблокировки с нагрузкой на сжатие и растяжение на стр. 68.


ПРИМЕР ЗАКАЗА

ATL 10	RL1	C200	AC 230/400 B	FCM			
Серия и размер	Отноше- ние	Ход штока	Двигатель	Ограничители хода штока	 олнитель стройств	Ог	іции



ЛИНЕЙНЫЕ МЕХАНИЗМЫ ATL 10 с DC двигателями

ГАБАРИТНЫЕ РАЗМЕРЫ

Код штока	C100	C150	C200	C300	C400	C500
Рабочая длина хода с FCE [мм]	100	150	200	300	400	500
Рабочая длина хода с FCM [мм]	73	123	173	273	373	473

ЛИНЕЙНЫЕ МЕХАНИЗМЫ ATL 10 с DC двигателями

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Нагрузка при сжатии и растяжении до 4 000 Н
- •Линейная скорость до 150 мм/с
- ■Стандартная длина штока: 100, 150, 200, 300, 400, 500 мм (для других / более длинных ходов штока свяжитесь с нами)
- •Корпус и заднее крепление из алюминиевого сплава, с бронзовой втулкой
- •Внешняя труба из анодированного алюминия
- ■Шток из хромированной стали допуск f7
- •Стандартное переднее крепление ВА или наконечник с отверстием ROE из нержавеющей стали AISI 303 с бронзовой втулкой
- •Электродвигатель постоянного тока 12 или 24 В (Характеристики двигателя см. на стр. 69)
- •Рабочий цикл при максимальной нагрузки: 30% за 10 мин при (-10 ... +40) °С
- ■Стандартная защита IP54
- (правостороннее, код RH)
 - дополнительного обслуживания

ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

- Различные передние крепления
- Шток из нержавеющей стали (код SS)
- Задняя скоба (код SP)
- Защита от механической перегрузки, предохранительная муфта (код FS)
- Электродвигатель с тормозом
- Двунаправленный инкрементный энкодер, 100 им./об. с обнулением импульсов, двухтактный, 8 24 Vdc (код EH38)
- Два регулируемых концевых магнитных выключателя (код FCM)
- Дополнительные выключатели для промежуточных положений
- Электромеханический ограничитель штока для линейной скорости до 30 мм/с (код FCE) (Технические данные см. стр. 72)

ОПЦИИ:

- •Стандартное положение двигателя, как показано на эскизе •Двигатель с противоположенной стороны (левостороннее, код LH)
- Механизм заправлен высокоресурсной смазкой и не требует ■Тыловое крепление повернуто на 90°(код RPT 90)

Характеристики с электродвигателем постоянного тока DC 24 B

(Характеристики с DC 12 В: той же нагрузки, линейная скорость на 10 % ниже, электрический ток в 2 раза выше)

1-заходный трапецеидальный винт Tr 14 4						
Отношение	Усилие [Н]	Скорость [мм/с]	Ток [А]			
RH1	680	50	4			
RV1	1020	32	4			
RN1	1770	16	4			
RL1	2960	8	4			
RXL1	4000	4	4			

2-заходный трапецеидальный винт Tr 14 8 (P4)							
Отношение	Усилие [Н]	Скорость [мм/с]	Ток [А]				
RH2	430	100	4				
RV2	650	64	4				
RN2	1160	32	4				
RL2	1970	16	4				

3-заходный трапецеидальный винт Tr 14 12 (P4)							
Отношение	Усилие [Н]	Скорость [мм/с]	Ток [А]				
RH3	310	150	4				
RV3	470	96	4				
RN3	840	48	4				
RL3	1430	24	4				

Условия самоблокировки

Информация о статической самоблокировки с нагрузкой на сжатие и растяжение на стр. 68.

ПРИМЕР ЗАКАЗА

ATL 10	RL1	C200	DC 24 B	FCM				
Серия и размер	Отноше- ние	Ход штока	Двигатель	Ограничители хода штока	П~.	полнитель устройства	Опь	ции

12.2 Условия статической и динамической самоблокировки штока

- Линейный механизм самоблокируется при условии, когда:
 - -применяемое усилие на сжатие или растяжение при неработающем линейном механизме не вызывает линейное перемещение (**самоблокируется статически**).
 - -выключении подачи питания на электродвигатель работающего линейного механизма со сжимающим и тянущим усилием, прекращается перемещение (самоблокируется динамически).

Условия самоблокировки описаны в следующих ситуациях:

1. Полностью статическая самоблокировка

Механизм не работает, отсутствует вибрационная нагрузка (условие обеспечения). Применяемая на актуаторе сжимающая или растягивающая нагрузка (до максимально допустимой) не приводит к линейному перемещению: линейные механизмы с 1-заходной трапецеидальной резьбой.

2. Частичная статическая самоблокировка

Механизм не работает, отсутствует вибрационная нагрузка (условие обеспечения).

- применяемое на механизме усилие на сжатие или растяжение (до 70% максимально допустимого) не приводит к началу линейного перемещения: линейные механизмы с 2-заходной трапецеидальной резьбой, передаточные отношения RL и RN.
- применяемое на механизме усилие на сжатие или растяжение (до 50% максимально допустимого) не приводит к началу линейного перемещения: линейные механизмы с 2-заходной трапецеидальной резьбой, передаточные отношения RV и RH
- применяемое на механизме усилие на сжатие или растяжение (до 30% максимально допустимого) не приводит к началу линейного перемещения: линейные механизмы с 3-заходной трапецеидальной резьбой

ПРИМЕЧАНИЕ: при нагрузках, выше указанных, мы предлагаем использовать электродвигатель с тормозом.

3. Статический обратный ход

Актуаторы с шариковинтовой передачей, в основном, не самотормозящиеся, то есть даже при применении нагрузки менее 20% максимально допустимого значения возможно самопроизвольное перемещение штока под воздействием нагрузки. Поэтому мы рекомендуем использовать электродвигатель с тормозом.

По всем неоднозначным условиям самоблокирования, как статического, так и динамического, пожалуйста, свяжитесь с Отделом Технической Поддержки.

Точность остановки

При отключении подачи питания на электродвигатель остановка актуатора зависит от следующих факторов:

- -КПД механизма и линейная скорость;
- -момент инерции электродвигателя;
- -момент инерции нагрузки.

Очень важно оценить взаимосвязь всех этих факторов для того, чтобы проверить необходимость электрического торможения и, соответственно, амортизатора и/или электродвигателя с тормозом. Обычно, линейные механизмы, работающие со скоростью до 15-30мм/с, не требуют вспомогательного устройства торможения. При высоких нагрузках в направлении движения или при требуемой точности остановки и повторении, рекомендуется использовать двигатель с тормозом.

Если у Вас возникли какие-то вопросы относительно применения, пожалуйста, свяжитесь с нашим Отделом Технической Поддержки.

12.3 DC Электродвигатели (постоянного тока)

Коллекторные электродвигатели с заменяемыми щетками. (механизмы ATL 10, UAL 0, BSA 10, BSA 11, UBA 0, CLB 25, CLB 27)

Двигатели с возбуждением от постоянных магнитов, без вентилятора, с тормозом или без. Щетки с большим сроком эксплуатации.

Двигатели укомплектованы двужильным кабелем 2x1 мм, 1.5 мм длиной. Масса двигателя: 1.3 кг.

Выходная мощность	70	Вт
Номинальный ток	3.7 A (24 B)	8.4 A (12 B)
Максимальный ток	18 A (24 B)	30 A (12 B)
Сопротивление	0.85 Ом	0.23 Ом
Сопротивление	(24 B)	(12 B)
Степень защиты	ΙP	54

Номинальная частота вращения	3000 об/мин.		
Номинальный крутящий момент	0.22 Нм		
Максимальный крутящий момент	1.1 Нм		
Индуктивность	1.34 мГн		
Класс изоляции	F	=	

ДВИГАТЕЛЬ С ТОРМОЗОМ: по запросу-нормально замкнутый электромагнитный тормоз DC.

По запросу возможно осуществить отдельную подачу питания на тормоз

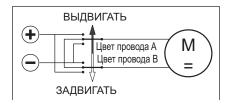
Общая масса электродвигателя с тормозом: 1.8 кг.

Питание: 0.4 А для 24 В; 0.85 А для 12 В Тормозной момент на тормозе: 0.5 Н*м

ВНИМАНИЕ! Тормоз двиг-ля нормально замкнутый; для того, чтобы активировать его, требуется постоянная подача номинального напряжения. При низком напряжении тормоз не открывается.

Двигатели HE со сменными съемными щетками (механизмы серии LMR, ATL, CLA, LMP, LMI)

Электродвигатели с возбуждением от постоянных магнитов без вентилятора.


Двигатель не комплектуется тормозом и щетки не заменяются

Обмотка стандартных DC двигателей указанной мощности имеет класс изоляции "B"

Данные двигатели имеют специальный защитный кожух, монтируемый на защитный кожух двигателя что позволяет достичь класс защиты (Protection Class) по IP: 65.

Указанные в каталоге диаграммы к механизмам с двигателями постоянного тока иллюстрируют изменение нагрузочной способности механизма на штоке в зависимости от внешнего усилия. Данные диаграммы позволяют выбрать требуемую скорость в зависимости от усилия.

Схема подключения электродвигателя - направление движения штока.

Механизм с DC двигателем Правосторонний монтаж	1 1 1 1 1 1 1 1 1 1 1 1 1	LMR 03	ATL 02	ATL 05	ATL 08	ATL 12	CLA 20	CLA 25
Цвет провода А	красный	красный	коричневый	коричневый	коричневый	красный	коричневый	коричневый
Цвет провода В	черный	черный	голубой	голубой	голубой	голубой	голубой	голубой

Механизм с DC двигателем, Левосторонний монтаж	LMR 01	LMR 03	ATL 02	ATL 05	ATL 08	ATL 12	CLA 20	CLA 25
Цвет провода А	красный	красный	голубой	голубой	голубой	голубой	голубой	голубой
Цвет провода В	черный	коричневый	коричневый	коричневый	коричневый	красный	коричневый	коричневый

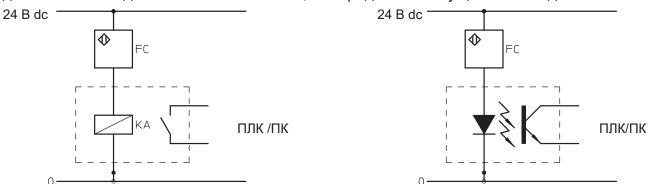
12. Асинхронные электродвигатели

						,	
Механизм	Двигатель	Мощность кВт	Кол-во поюсов	Вх. напряжение Vca, B	Частота Гц	Номинальный ток А	Конденсатор мкФ
	АС 3-фазный	0.06		230/400		0,7-0,4	-
ATL 02	АС 1-фазный	0.06	2	230	50	0.68	5
		0.12	2			0,81-0,46	-
A-TI 40	АС 3-фазный	0.09	4	230/400	50	0,8-0,45	-
ATL 10	AC 1 doguniă	0.12	2	000	50	2.6	12.5
	АС 1-фазный	0.09	4	230		1.6	12.5
	AC 2 dagger 19	0.25	2	000/400		1,3-0,75	-
ATI 40	АС 3-фазный	0.18	4	230/400	50	1,1-0,66	-
ATL 12	AC 1 doggu uš	0.25	2	000	50	2.1	20
	АС 1-фазный	0.18	4	230		1.9	16
01.4.00	АС 3-фазный	0.06	0	230/400	50	0,7-0,4	-
CLA 20	АС 1-фазный	0.06	2	230	50	0.68	5
	A C 2 da · · · ·	0.12	2	000/400		0,81-0,46	-
CLA 25 AC 3-фазный	0.09	4	230/400	50	0,8-0,45	-	
CLA 25S AC 1-фазный	0.12	2	220		2.6	12.5	
0 = 1 = 0	JLA 25М │ АС 1-фазный	0.09	4	230		1.6	12.5
CLA 28	АС 3-фазный	0.06	2	230/400	50	0,7-0,4	-
CLA 28 T	АС 1-фазный	0.06	2	230	50	0.68	5
	АС 3-фазный	0.12	2	220/400		0,81-0,46	-
BSA 10	АС 3-фазный	0.09	4	230/400	50	0,8-0,45	-
BSA 11	АС 1-фазный	0.12	2	230	50	2.6	12.5
	АС 1-фазный	0.09	4	230		1.6	12.5
	АС 3-фазный	0.25	2	230/400		1,3-0,75	-
DCA 12	АС 3-фазный	0.18	4	230/400	50	1,17-0,66	-
BSA 12 A	АС 1-фазный	0.25	2	220	50	2.1	20
		0.18	4	230		1.9	16
	AC 2 dags	0.12	2	230/400		0,81-0,46	-
CLB 25	АС 3-фазный	0.09	4	230/400	50	0,8-0,45	-
CLB 27	АС 1-фазный	0.12	2	230	50	2.6	12.5
	до г-фазпый	0.09	4	230		1.6	12.5

12.4 Асинхронные электродвигатели Класс Тормозной Тормозной Класс Источник питания Класс защиты номин. изоляции Вентилятор Тормоз момент катушки тормоза защиты двигателя ТОК (1) (2)(3)Нм тормаза (1) Α F IP 55 Не доступен Не доступен Источник DC пост. тока F IP 55 0.05 IP 44 Стандарт По запросу 1.7 через выпремитель Источник DC пост. тока 0.09 F IP 55 Стандарт По запросу 4 IP 44 через выпремитель Не доступен F Не доступен IP 55 Источник DC пост. тока F IP 55 Стандарт По запросу 0.05 1.7 IP 44 через выпремитель F IP 55 Стандарт Не доступен Источник DC пост. тока F IP 55 0.05 IP 44 Стандарт По запросу 1.7 через выпремитель Источник DC пост. тока F IP 55 Стандарт По запросу 0.09 4 IP 44 через выпремитель Источник DC пост. тока F IP 55 0.05 IP 44 Стандарт По запросу 1.7 через выпремитель

⁽¹⁾ По запросу доступны более высокий класс защиты и класс изоляции.

⁽²⁾ Нормально закрытый электромагнитный тормоз постоянного тока с постоянными магнитами. питание осуществляется от однофазной сети переменного тока через встроенный выпрямитель.


⁽³⁾ Электродвигатели с раздельной подачей питания на тормоз и двигатель доступны по запросу. Данное подключение применяется в случае применения электродвигателя с тормозом в составе с преобразователем частоты.

13. ОГРАНИЧИТЕЛИ ХОДА ШТОКА И ПОЗИЦИОННОЕ УПРАВЛЕНИЕ

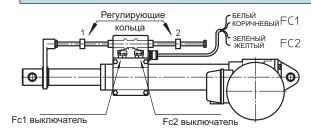
ОБЩАЯ ИНФОРМАЦИЯ

В случае применения линейных механизмов, где концевые ограничители хода штока должны быть подключены к ПЛК или ПК, мы предлагаем осуществить подключение

13.1 Магнитные ограничители хода штока (геркон) FCM (линейные механизмы серии ATL, BSA, UAL, UBA, LMI 02 и LMP 03)

Магнитное поле кольца, которое установлено на гайке, активирует контакт геркона, закрепленного на защитной трубе с помощью зажима. Положение ограничителей вдоль трубы легко регулируется.

Ограничители, используемые для определения любого промежуточного положения (между Lc и La), переключаются в двух разных положениях в зависимости от направления движения штока (выдвижение или задвижение). ВНИМАНИЕ! Магнитные концевые ограничители могут работать только при подключении к цепи управления для того, чтобы активировать электрическое реле. Не подключайте их в сериях между подачей питания и электродвигателем.


НОМИНАЛЬНОЕ ЗН	АЧЕНИЕ	ΓEF	РКОНОВ

	DC	AC	
Номинальное напряжение	(3 130) B	(3 130) B	
Макс. мощность переключения	20 Вт	20 VA	
Макс. ток переключения	300 мА (резис	тивная нагрузка)	
Макс. индуктивная нагрузка	3 Вт		

Стандартно: NC ограничитель (нормально замкнутый -контакт) оборудован сигналом LEDS (светодиодным -сигналом) и защитным варистором от скачков - напряжения.

Стандартный кабель длиной 2м; провода 2х0.75мм По запросу возможны различные конфигурации: NO (нормально открытый); CS (заменяемый контакт). Для получения более подробной информации, пожалуйста, свяжитесь с Отделом Технической Поддержки.

13.2 Электрические ограничители хода штока FCE (механизмы ATL10, ATL12, BSA10, BSA12)

Номинальное значение контактов					
Цопражонно	Макс. ток				
папряжение	Резистивная нагрузка Индуктивная нагруз				
250 Bac	5 A	3 A			
30 Bdc	5 A	0.1 A			
125 Bdc	1.4 A	-			

Два электрических ограничителя, установленных внутри герметичной пластиковой коробки, активируются с помощью двух регулируемых колец через воротник вала Стандартные ограничители подключаются как NC, длина кабеля 1,5м; провода 4 х 0,75мм.

По запросу они могут подключаться как NO или CS (по наличию конфигураций, пожалуйста, свяжитесь с Отделом Технической Поддержки).

Мин.длина Lc при задвинутом штоке регулируется с помощью кольца 1. FC1 ограничитель подключается с помощью БЕЛОГО и КОРИЧНЕВОГО кабелей.

Макс.длина La при выдвинутом штоке регулируется с помощью кольца 2. FC2 ограничитель подключается с помощью ЖЕЛТОГО и ЗЕЛЕНОГО кабелей.

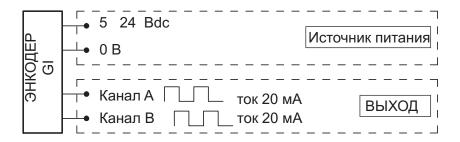
Положение латунных колец вдоль опорного стержня из нержавеющей стали легко регулируется.

ВНИМАНИЕ! Электрические ограничители могут работать только при подключении к цепи управления для того, чтобы активировать электрическое реле. Не подключайте их в сериях между подачей питания и электродвигателем.

13. ОГРАНИЧИТЕЛИ ХОДА ШТОКА И ПОЗИЦИОННОЕ УПРАВЛЕНИЕ

13.5 Энкодер GI (линейные механизмы LMR01 и LMR03)

Эффект Холла, двунаправленный, инкрементальный энкодер


Конфигурация выхода: Возвратно-поступательный Код GI 21: 2 выходных канала, 1 импульс на оборот Код GI 24: 2 выходных канала, 4 импульса на оборот

Длина кабеля: как кабель двигателя

Защита от изменения полюсов

Защита от любого неправильного выходного соединения

Примечание: Информацию по цвету проводящего кабеля можно посмотреть на схеме подключения в «Инструкции по установке», которые поставляются вместе с изделием.

13.6 Энкодер EH38 (линейные механизмы ATL 10, UAL 0, BSA 10, UBA 0)

Двунаправленный, инкрементальный, оптический энкодер

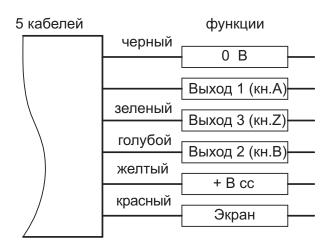
Конфигурация выхода: Возвратно-поступательный

Код ЕН38: 2 канала выхода, 100 импульсов на оборот, с нулевой установкой импульса

Длина кабеля: 1.3 м

Защита от короткого замыкания Защита от изменения полюсов

Защита от любого неправильного выходного соединения


Напряжение на входе: 8 24 B dc

Потребление питания при отсутствии нагрузки: 100 мА

Макс изменяемый ток: 50мА на канал

Примечание: Предохранительная муфта FS не может применяться с вращательным энкодером

(исходное положение не сохраняется из-за проскальзывания).

